
0

0

e

Report No. UVA/528243/CS88/103

A u g u s t 1987 I

0

e

1fiASA-CZt-180347)

b h a

Annual Progress Repor t
Award No. NAG-1-605

Ju ly 1, 1985 - J u n e 30, 1987

DETECTION OF FAULTS AND SOFTWARE
RELIABIL ITY ANALYSIS

Submit ted to :

National Aeronaut ics and Space Admin is t ra t ion
Langley Research Center
Hampton, V i r g i n i a 23665

At tent ion: M r . Gera rd E. Migneaul t
FCSD M/S 130

S u bmi t ted by :

J. C. K n i g h t
Associate Professor

DETBCTICY CP FAULTS AYD N87- 2 1433
iGYTOIME B E L I A B l L l T Y ABALPSIS Annual
Erogress Report, 1 Jnl. 19€5 - 30 Juri. 1987
(Virgiaia U n i v .) 14 p A v a i l : " I I S HC Unclas
AOZ/LIP A01 CSCL 092, G3/61 0090658

e

a

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

e

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

0

*

e

e

e

0

e

*

Annual Progress Report
Award No. NAG-1-605

J u l y 1, 1985 - June 30, 1987

DETECTION OF FAULTS AND SOFTWARE
RELIABILITY ANALYS I S

Submitted t o :

Nat ional Aeronautics and Space Adminis t ra t ion
Langley Research Center

Hampton, V i rg in i a 23665

At ten t ion : Elr. Gerard E . f l igneaul t
FCSD r i p 130

Submitted by :

J. C . Knight
Associate Professor

Department of Computer Science

SCHOOL OF ENGINEERNG AND APPLIED SCIENCE

UNIVERSITY OF V I R G I N I A

CHARLOTTESVI LLE , V I R G I N I A

Report No. UVA/528243/CS88/103

August 1987

Copy No. 4

e

TABLE O F C O N T E N T S

Page

. 1

3

I . I N T R O D U C T I O N

. 11. C O N S I S T E N T COMPARISON

. 4 111. C O N P A R I S O N T E S T I N G

. I V . FAULT-TOLERANCE THROUGHDATA D I V E R S I T Y 6

V . S E E D E D F A U L T S 7 .
9 R E F E R E N C E S .

ii

a

_ -

SECTION I

INTRODUCTION

a

0

a

0

e

The work camed out under this grant has been an investigation of software faults in a

number of areas. The goal was to better understand their characteristics and to apply this

understanding to the software development process for crucial applications in an effort to

improve software reliability. Some of the work was empirical and some analytic., The empirical

work was based on the results of the Knight and Leveson experiment [l] on N-version

programming. The analytic work has built useful models of certain aspects of the software

development process.

Multi-version or N-version programming [2] has been proposed as a method of providing

fault tolerance in software. The approach requires the separate, independent preparation of

multiple (i.e. “N”) versions of a piece of software for some application. These versions are

executed in parallel in the application environment; each receives identical inputs and each

produces its version of the required outputs. The outputs are collected by a voter and, in

principle, they should all be the same. In practice there may be some disagreement. If this

occurs, the results of the majority (assuming there is one) are taken to be the correct output, and

this is the.output used by the system.

The major experiment carried out by Knight and Leveson was designed to study N-version

. programming and initially investigated the assumption of independence. In the experiment,

students in graduate and senior level classes in computer science at the University of Virginia

(UVA) and the University of California at Imine (UCI), were asked to write programs from a

single requirements specification. The result was a total of twenty-seven programs (nine from

UVA and eighteen from UCI) all of which should produce the same output from the same input.

e
- 1 -

0

a

0

0

a

Each of these programs was then subjccted to one million randomly-generated test cases. The

Knight and Leveson experiment has yielded a number of programs containing faults that are

useful for general studies of software reliability as well as studies of N-version programming.

Our work has been in a number of areas and each area is covered separately in this report.

The specific topics are:

(1) the Consistent Comparison Problem in N-version systems,

(2) analytic models of comparison testing,

(3) fault tolerance through data diversity,

(4) and the relationship between failures caused by automatically seeded faults.

0

This report is quite brief since the details of the research have been reported in published or

submitted papers. These papers have been supplied to the sponsor separately and are merely

RfeiCnCed here.

0

- 2 -

e

0

SECTION I1

CONSISTENT COMPARISON

We have identified previously a difficulty in the implementation of N-version programming.

The problem, which we call the Consistent Comparison Problem, arises for applications in which

decisions are based on the results of comparisons of finite-precision numbers. We have shown

that when versions make comparisons involving the results of finite-precision calculations, it is

impossible to guarantee the consistency of their results. It is therefore possible that correct

versions may arrive at completely different outputs for an application that does not apparently

have multiple correct solutions. There is no solution to the Consistcnt Comparison Problem, and

we have been unable to find techniques for avoiding it. If this problem is not dealt with

explicitly, an N-version system may be unable to reach a consensus even when none of its

component versions fail.

A revised paper describing this work has been submitted to the IEEE Transactions on

Software Engineering 131. The paper was revised based on the comments made by referees on a

previous version of the paper.

0

- 3 -

0
SECTION 111

COMPARISON TESTING

a

a

e

e

a

A common argument [4] in favor of at least dual programming (i.e. N-version programming

with N = 2) is that testing of safety-critical real-time software can be simplified by producing two

versions of the software and executing them on large numbers of test cases without manual or

independent verification of the correct output. The output is assumed correct as long as both

versions of the programs agree. The argument is made that preparing test data and determining

correct output is difficult and expensive for much real-time software. Since it is assumed

“unlikely” that two programs will contain identical faults, a large number of test cases can be

run in a relatively short time and with a large reduction in effort required for validation of test

results. We refer to this approach as comparison testing although it is also known as back-to-

Back testing in the literature.

Comparison testing has been criticized on the grounds that it tends to reveal only those

h i i s for which the programs generate different outputs. Such faults are inconvenient but not

dangerous to an N-version system since they will be detected and tolerated. Comparison testing

will not reveal faults that cause identical wrong outputs and it is precisely these that will not be

tolerated.

We have found that comparison testing is a very useful and cost-effective method of fault

elimination in multi-version systems. The reason is that although two faults in different

programs may cause coincident failures, our experience has been that such faults do not always

cause coincident failures. Thus there are occasions when only one of the two programs will fail

allowing comparison testing to detect the situation.

- 4 -
e

0

e

e

e

We have analyzed the performance of comparison testing from several viewpoints. First,

we have built Markov models of the fault location process. The models associate states with the

number of located faults and the order in which they are found. Transition probabilities between

states are just the probabilities of finding particular faults on each test case. The expected number

of tests to locate each fault even for faults that cause coincident failures can be determined from

such models. The models show that comparison testing is remarkably effective when compared

with an ideal (and unrealizable) testing system employing an oracle.

In this work we have also derived cost models of comparison testing, and models of the

reliability that will be exhibited by N-version systems built from versions developed using

comparison testing.

This work is presented in a PhD dissertation [SI that has been supplied separately to the

sponsor.

- 5 -
e

I

a

SECTION IV

0

0

0

e

0

FAULT TOLERANCE THROUGH DATA DIVERSITY

We have proposed a new approach to software fault tolerance that we term datu diversity.

Fault tolerance has been attacked in the past through design diversity. We suggest that it might

be achieved through diversity in the data.

The basis of the approach is to execute several copies of a single program but supply each

with different data. The sets of data, although different, are semantically equivalent. The idea of

executing multiple copies of a single version of software has been rejected by others as pointless.

The argument for rejection is that if one copy fails they will all fail. We have found, however,

that executing several copies with different but equivalcnt inputs is a useful approach.

In fact, a variant of this approach has been suggested and tried by industrial software

developers. Their approach is to use conventional N-version programming but to stagger the

times at which the versinns read senson so thzt they wi!! each receive s!ighei diffcrcn: dak

values. In practice, it is not necessary or even beneficial to use different versions and it is not

necessary to await changcs in the data over time. The changes can be computed.

There have been no previous analyses or experiments performed to evaluate the

performance of either the industrial approach or our method of data diversity. We have performed

analytic and simulations studies of both and have very encouraging results.

This work was reported in a paper presented at the Seventeenth International Symposium on

Fault Tolerant Computing [6] and a more detailed report has been submittcd to the IEEE

Transactions on Computers [7].

- 6 -
e

SECTION V

SEEDED FAULTS

0

In the N-version programming method, separate development is intended to eliminate the

sharing of (mis)understanding of the application; it associates independence of program failures

with mutual isolation of the program designs. However, separate development has no effect on

errors unbiased by knowledge of the application. For example, a programmer may inadvertently

misorder certain steps in a computation or reverse the use of “and” and “or” in a conditional

expression. The important characteristic of these errors is that they are not specific to the

application. The separate development process does not affect their introduction. We have

examined whether unbiased errors play any role in the expected independence of the resulting

programs.

We have adopted an operational definition of independence: failures of two programs are

dependent if a statistical measure shows a correlation of incorrect outputs for a given input. That

IS, programs that fail together significantly more often than expected are considered to contain

dependent errors. How dependent errors are introduced does not affect the operational viewpoint

of independence*. The statistical measure used here, a x2 test of an independence hypothesis, is

the same as has been applied in [l]. A hypothesis that two programs fail independently is formed

and the x2 statistic is generated. When the hypothesis is rejected with a high confidence level,

dependence is assumed.

As part of a separate project we have performed an experiment in error seeding. Seventeen

of the twenty-seven programs produced in the Knight and Leveson experiment wcre sclcctcd at

random, errors wcre seeded into all seventeen. and the resulting programs were tested. The

* We note that other authors use different definitions of independence, for example [SI.

-7-

a

e

e

e

e

0

algorithms used for sccding errors were very simple: 2 algorithms modified the bounds on for

statements, 3 algorithms modified the Boolean expression in if statments, and 1 algorithm deleted

assignment statements. Each of these algorithms was applied 4 times to each of the 17 programs

for a total of 408 modified programs, each of which contained one seeded error. It should be

stressed that the seeded errors were introduced at random without using any semantic knowledge

of the program structure. To introduce one seeded error, a syntactic structure was selected at

random and the seeding algorithm was applied. The seeded errors are unbiased errors.

To select seeded errors to be investigated for dependent failures a form of acceptance

testing was used: seeded errors with a mean time to failure smaller than a certain threshold were

disqualified from the experiment. In addition, seeded errors which caused no failures during the

original error seeding experiment were also disqualified. 45 of the 408 seeded errors passed this

acceptance test. Such an acceptance test is equivalent to the original acceptance testing done to

admit the launch interceptor programs to the original N-version experiment. In this experiment

all indigenous errors were fixed before the seeded errors were installed in the programs. Each

fZir4Q.P gf 2 gjx:p_fi prqTrz,n;? is czuse:! GF>j bj :he sccdcd C i i G i .

The results of this experiment showed that seeded errors tended to cause coincident failurcs

at a rate far higher than would be expected by chance. This is surprising, and its effects need to

be taken into account in determining the reliability of N-version systems. This work has been

documented in a paper that has been submitted to the IEEE Transactions on Software

Engineering [9].

a

a

- 8 -
a

REFERENCES

0

0

e

e

(1) J.C. Knight and N.G. Leveson, “An Experimental Evaluation Of The Assumption Of

Independence In Multi-Version Programming,’ ’, IEEE Transactions on Software

Engineering, Vol. SE- 12, No. 1, January 1986.

(2) L. Chen and A. Avizienis, “N-Version Programming: A Fault-Tolerance Approach To

Reliability Of Software Operation”, Digest of Papers FTCS-8: Eighth Annual

International Conference on Fault Tolerant Computing, Toulouse, France, pp. 3-9, June

1978.

e
(3) S.S . Brilliant, J.C. Knight, and N.G. Leveson, “The Consistent Comparison Problem In N-

Version Software”, IEEE Transactions on Software Engineering, to appear.

a
(4) C.V. Ramamoorthy, Y.R. Mok, E.B. Bastani, G.H. Chin, and K. Suzuki. “Application Of

A Methodology For The Development And Validation Of Reliable Process Control

Software,”, iEEE Transactions on Sojware Engineering, vol. SE-7, no. 6, pp. 537-555,

Nov. 1981.

(5) S.S. Brilliant, “Testing Multi-Version Software”, Ph.D. Dissertation, University of

Virginia, September, 1987. 0

(6) P.E. AmmaM and J.C. Knight, “Data Diversity: An Approach To Software Fault

Tolerance”, Digest of Papers FTCS-I 7: Seventeenth Annual International Conference on

Fault Tolerant Computing, Pittsburgh, PA, pp. 122-126, July 1987.

e

(7) P.E. Ammann and J.C. Knight, “Data Diversity: An Approach To Software Fault e
Tolerance”, submitted to IEEE Transactions on Computers.

- 9 -
e

0

a

a

a

(8) A. Avizienis “The N-Version Approach To Fault Tolerant Software”, IEEE Transactions

on Software Engineering, Vol. SE-11, No. 12 (December 1985).

(9) P.E. Ammann and J.C. Knight, “The Failure Characteristics of Unbiased Faults and Their

Relation to Multi-Version Software”, submitted to ZEEE Transactions on Software

Engineering.

- 1 0 -

e
Copy No.

1 - 3

4 - 5 ;':

e

0

e

6 - 7

8

9 - 10

11

DISTRIBUTION LIST

"1 reproducib le copy

Nat ional Aeronautics and Space Adminis t ra t ion
Langley Research Center
Hampton, Virginia 23665

At ten t ion : Fir. Gerard E . Eligneault
FCSD Pl/S 130

NASA S c i e n t i f i c and Technical Information
Fac i 1 i t y

P . O . Box 8757
Balt imore/Washington I n t e r n a t i o n a l Ai rpor t
Baltimore, Plaryland 21240

J . C . Knight, CS

R . P . Cook, CS

E . H . Pancake, Clark Hal l

SEAS Publ icat ions F i l e s

0239:ald:DW209R

e

0

0

a

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There
are 150 faculty members, a majority of whom conduct research'in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,
Law, Medicine, Ntirsing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.

0

0

